Optimizing Your Breast MRI Technique

Nola Hylton, Ph.D.
Department of Radiology, University of California, San Francisco

Introduction

Breast magnetic resonance imaging (MRI) is finding wider application in the
clinical management of breast cancer and both the technology and performance
standards for breast MRI continue to improve. In 2003, the American College of
Radiology (ACR) added MRI and ultrasound to its publication of the ACR
BIRADS® Breast Imaging Reporting and Data System [1], providing guidelines for
performing and interpreting breast MRI. Developments in breast coil technology,
biopsy equipment and CAD systems are all contributing to improved utilization of
breast MRI. In the following review, we discuss the technical aspects of breast
MRI and consider some of the clinical indications that are emerging.

Technical considerations for optimizing your breast MRI technique

Equipment
To date, breast MRI has been performed mostly on 1.5 T magnets because of

the widespread availability of these systems. A limited number of studies have
been reported at lower field strengths, but the available published data are
inadequate to make a true comparison of performance [2-4]. The signal-to-noise
advantage of higher field strengths is presumed to translate into better ability to
detect breast cancers, but this has not been established. Another advantage of
higher field strength is the greater spectral separation attainable, leading to more
robust fat-suppression and better ability to resolve individual peaks in magnetic
resonance spectroscopy (MRS) measurements. The measurement of choline
concentration by MRS has been shown to be elevated in breast cancers and can
potentially give an early indication of response to treatment for primary breast
cancers [5-7]. Breast MR spectroscopic techniques should realize improvements
at the higher field strengths because of the greater spectral resolution that can be
achieved. With the installation of larger numbers of 3T magnet systems, the
impact of field strength on breast MRI performance may become more apparent.

Regardless of field strength, breast MRI should be performed using a dedicated
breast radiofrequency coil. Most breast coils use multi-coil phased arrays with
geometric designs optimized for bilateral imaging of the breasts, chest wall and
axilla. While 4-coil arrays have been most common to date, 8-channel coils
have recently been introduced and 16-channel coils are expected to be available
in the near future, with resulting signal-to-noise improvements.



Patient positioning

Breast imaging is performed most commonly with the patient in the prone
position, to minimize motion artifacts that can arise from respiration. Patients can
enter the magnet feet first or head first; however, feet first entry can often be
helpful in reducing claustrophobia. Because the patient must lie on top of the
breast coil, which extends 6-8 inches above the patient table, space inside the
magnet bore is even more restricted than with supine exams and thus patient
comfort is an issue. Patients may find it more comfortable to raise their arms
above their heads, with their head turned to one side. If an automatic injector is
not used, access to the site of injection may need to be considered. Because of
the need to minimize patient motion between scans, it is important that patients
are comfortable enough to remain in the same position for the duration of the
breast exam. The position of the breast in the coil should also be checked to see
that the breast is as deep and as centered in the coil as possible, with the nipple
facing straight down. Consistent positioning is especially important when serial
studies need to be compared.

Light breast compression can be applied to immobilize the breast. Motion during
the scan can cause blurring and other artifacts; motion between scans can cause
mis-registration between pre-contrast and post-contrast images, which can make
interpretation more difficult, particularly if subtraction methods are used to create
enhancement-only images. Compression should be only minimal however, since
strong compression can affect the kinetics of contrast enhancement by impeding
the leakage of contrast into the tumor, potentially leading to false negative
findings. This effect of compression should be taken into account when re-
localizing a lesion for MR-guided biopsy, when stronger compression is likely to
be used.

Contrast administration

For cancer detection, breast MRI is performed using a gadolinium-based contrast
agent and T1-weighted imaging technique. Non-contrast imaging of the breast
does not have adequate sensitivity or specificity and is not recommended for
evaluation of breast cancer. Breast cancers are identified on the basis of
significant early increase in signal intensity following intravenous injection of
contrast agent. Clinically-available gadolinium-based contrast agents are used
in combination with T1-weighted imaging methods, most commonly using a
single dose of 0.1 mmol/kg body weight. Interpretation of breast MR images is
largely based on the magnitude, speed and morphology of signal enhancement
following injection. Thus it is critical that contrast injection be performed in a
consistent manner from study to study. The use of a power injector can help
ensure consistency and should be used if available. Injection can be performed
as a bolus or infusion. Infusion rates in the range of 1-2 ml/sec are common.
Unsuccessful or incomplete injections should be noted and taken into account by
the interpreting radiologist. It may be necessary to recall the patient on another
day for a repeat exam if the contrast injection was inadequate.




Pulse sequence techniques

A number of factors must be taken into account in choosing parameters of the
T1-weighted pulse sequence for the contrast-enhanced study. In general, the
choices involve making trade-offs between spatial resolution, temporal resolution,
signal-to-noise, and whether active fat-suppression is used. The limiting factor
for breast MRI is the need to acquire images within the first few minutes following
the injection of contrast agent, before enhancement in the tumor and surrounding
normal parenchymal tissue equilibrate. Small molecular weight agents such as
the gadolinium contrast agents used for MRI will leak from the intravascular
compartments into tissue. The detection of breast cancers relies on capturing
the image soon after injection, when leakage in malignant tissue is still much
greater than in normal tissue, because of its pathologic microvasculature. In
general, one or more post-contrast image sets must be acquired within 2 minutes
of contrast injection to sample the peak enhancement of breast malignancies.
With longer times, contrast between malignant and normal breast tissue may be
compromised. Thus, the selection of pulse sequence parameters, such as the
matrix size, field-of-view (FOV), number of slices, and incorporation of active fat
suppression, must take into account the need to keep total scan time on the
order of several minutes or less. Dynamic techniques to measure
pharmacokinetic parameters have more stringent requirements for temporal
resolution, as described in the next section.

Gadolinium shortens the T1 value of tissue in proportion to its concentration, and
a T1-weighted pulse sequence is used to maximize its signal-enhancing effect.
3D gradient echo techniques, which can provide greater spatial resolution than
2D techniques, are being used increasingly for breast MRI because of
technology advances over the past decade that allow 3D acquisitions to be
performed in under 2 minutes. The choice of image orientation (transaxial,
sagittal, coronal) is largely based on radiologist preference. However, in any
acquisition orientation, the phase encoding direction should be chosen to
minimize image degradation due to motion artifact. For axial and sagittal scans,
the anterior/posterior direction should be used for frequency-encoding, with the
phase encoding in the left-right and inferior-superior directions, respectively.

While bilateral evaluation is often desirable or essential as for a screening exam,
higher spatial resolution can be obtained in a unilateral exam. For a fixed matrix
size (i.e., 256 x 256), in-plane spatial resolution is determined by the field-of-view
chosen. Thus, a large, axial FOV prescribed to include both breasts, will have
lower spatial resolution than an FOV prescribed to encompass one breast only.
The number of slices chosen for a 3D scan will have a direct impact on scan
time. In order to insure adequate coverage of one or both breasts, adjustments
have to be made to the number of slices, slice thickness or both, at the time the
scan is prescribed.

It is important to emphasize that some imaging parameters are selected at the
time of scan prescription to optimize for a specific patient or type of exam (i.e.,
screening, staging). Imaging methods such as dynamic contrast-enhanced



(DCE) MRI, for which quantitative measurements of signal intensity changes will
be used as the basis for diagnosis, require that data acquisition be performed
according to a pre-defined protocol, and it is important to maintain consistency
and to record when deviations to the protocol have occurred. For DCE-MRI, it is
particularly important to adhere to timing requirements for the sequential scans
acquired following contrast injection.

Dynamic contrast-enhanced MRI (DCE-MRI)

The classification ‘dynamic’ contrast-enhanced (DCE) MRI refers to techniques
with sufficient temporal resolution to evaluate the time course of contrast uptake
and washout in tumors, generally 1 minute or less. The temporal pattern of
enhancement can be assessed visually by categorizing the enhancement as
gradual, sustained or demonstrating washout. Quantitative measurements can
be made by plotting a curve of signal intensity versus time and measuring
empiric parameters such as the peak increase in signal intensity, the area under
the curve (AUC) or the early-to-late signal enhancement ratio (SER).
Physiologically relevant estimates of the transfer function k_, and fractional
plasma volume, fPV can be made by fitting the signal intensity changes to a
pharmacokinetic model of the leakage of contrast agent from the intravascular
space to the extravascular-extracellular space. For pharmacokinetic modeling,
tissue T1 values and estimates of the arterial input function are needed [8, 9].
While quantitative methods can more precisely characterize the temporal pattern
of enhancement, they require computer post-processing.

Several features of the contrast enhancement pattern have been associated with
breast malignancies, including speculated borders, rim enhancement and
contrast washout and a number of studies have used these features to
discriminate benign and malignant breast lesions [10-16].

Parallel imaging techniques

Parallel imaging is an advance in magnetic resonance imaging technology that
increases imaging speed by taking advantage of the different sensitivity profiles
of the multiple coils used in a multi-coil array, such as the breast coil. Fewer k-
space lines are acquired and sophisticated image reconstruction algorithms are
used to resolve phase-wrap and combine the data from the individual coils into a
single image. The scan time is reduced by a factor of R, where R is the number
of individual coil elements. For breast imaging, sagittal images of both breasts
can be performed in the same time as a unilateral exam. Alternatively, bilateral
axial or coronal images can be obtained in shorter times. There is a signal-to-
noise penalty associated with the time reduction. However, with newer, multi-
channel phased array breast coils excellent image quality can still be obtained.

Fat-suppression

Fatty tissue will appear much brighter than fibroglandular tissue on both T1 and
T2 weighted images, making it difficult to discern differences in signal intensity
within fibroglandular tissue. To improve the ability to discriminate signal




differences in the fibroglandular tissue, fat-suppression is often used. Fat
suppression can be actively imposed using chemical saturation of the fat signal,
or conversely, selective excitation of the water signal. These strategies, which
involve the use of special rf pulses as part of the pulse sequence, generally result
in lengthened scan time. The uniformity of fat-suppression can also be
compromised by inhomogeneities in the magnetic field, resulting in areas of the
image where fat-suppression fails, and occasionally causing erroneous
suppression of the water signal instead. The quality of active fat-suppression
can be maximized by performing a manual gradient shimming procedure prior to
the start of the scan. If localized fat-suppression failure still occurs, the images
should be evaluated to determine whether lesion conspicuity is likely to be
adversely affected. If so, slight adjustment to the center frequency setting (+ 50
Hz) can be made to shift the spatial location of the fat-suppression failure.

Fat-suppression can also be effectively achieved using image subtraction,
without incurring any increase in scan time. Following the imaging exam, pre-
and post-contrast enhanced images are subtracted to produce an image of the
enhanced areas of tissue only. The subtracted images are very useful for
highlighting enhancing structures, but can artificially create bright areas when
spatial mis-registration occurs because positioning of the breast has changed
between the pre- and post-contrast scans. While the subtracted images are
very informative about areas of tissue that have enhanced, non-enhancing tissue
does not appear and information about the surrounding tissue structures,
including the chest wall, cysts and surgical cavities is not provided.

Image post-processing

3D rendering methods using post-processing techniques such as the maximum
intensity projection (MIP) are useful for visualizing the shape and location of
enhancing lesions relative to the nipple, skin and chest wall. MIPs, which are
used routinely in magnetic resonance angiography (MRA) to visualize vascular
structures, can be created from the individual post-contrast data sets, or from a
subtracted data set, using software provided on most MRI scanner as part of the
vascular package. Other rendering techniques, such as 3D surfaces or cut-
away views, are available as part of post-processing software packages offered
commercially or as freeware. There are also many varieties of software
packages that can be used to numerically analyze contrast-enhanced MR
images, producing parametric maps of quantitative variables such as the
pharmacokinetic constants or empiric variables such as area under the
enhancement curve (AUC), time-to-peak enhancement or signal enhancement
ratio (SER).
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